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A Econometric appendix

This appendix provides a set of results on the behavior of sums of coefficients
in latent variable models. All results are derived under the assumptions that
the population coefficients and the correlation between latent variables are non-
negative. Section A.1 specifies our econometric model and assumptions.

In Section A.2, we study OLS estimates from a model with errors in variables,
and establish the following results:

1. In a regression model where all variables are measured with error, the
individual coefficient estimates are biased in unknown directions.

2. The sum of coefficients from such a regression provides a lower bound on
the sum of coefficients in the true latent variable model.

3. The negative bias in the sum of coefficients can be reduced by adding more
proxies to the regression.

Results 1 and 2 hold under very general assumptions; result 3 requires uncorre-
lated measurement errors, but mostly holds more generally in simulations.

Section A.3 shows that when there is measurement error, sums of coefficients
are less biased than R2. This result only relies on using standardized variables.

Finally, Section A.4 shows that an instrumental variables estimator can be
viewed as an upper bound on the sum of coefficients. This result relies on the
assumption of uncorrelated measurement errors.

A.1 Model

Assume an observed outcome variable y is generated by the model

y =

K∑
k=1

βkx
∗
k + ε, (A.1)

where x∗k are unobserved latent variables.
We observe M proxy variables xk = x∗k + uk, which have been standardized

so that Var(xk) = 1. We allow the measurement errors to have different vari-
ances, Var(uk) = λk, and denote the covariances among latent variables and
measurement errors, as Cov(x∗k, x

∗
k′) = ρk,k′ and Cov(uk, uk′) = σk,k′ , respec-

tively.
We generally think of y as a child outcome, and xk as the outcomes of rela-

tives in the parental generation, with subscript k = 1 representing the parents,
k = 2 the aunts and uncles, and so on to successively more distant relatives.
However, to facilitate exposition, we use numerical indices througout this sec-
tion.

In addition, we make the following assumptions:
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Assumption 1 (Classical measurement errors).

Cov(uk, x
∗
k′) = 0, ∀k, k′,

Cov(uk, y) = 0, ∀k.

It follows from Assumption 1 that Var(x∗k) = 1− λk.

Assumption 2 (Non-negative parameters). βk ≥ 0, ∀k.

Assumption 3 (Positively correlated latent variables). ρk,k′ ≥ 0, ∀k 6= k′.

Initially, we also maintain

Assumption 4 (Uncorrelated measurement errors). σk,k′ = 0,

although we relax this assumption in different ways below.
Finally, the following two assumptions are required when we allow for neg-

atively correlated measurement errors:

Assumption 5 (Non-increasing coefficients). βk+1 ≤ βk.

Assumption 6 (Non-increasing measurement errors). λk+1 ≤ λk.

Assumptions 5 and 6 are reasonable in our application: more distant relatives
are likely to have a smaller impact on children; and since outcomes for more
distant relatives are averaged over more individuals, measurement errors are
likely to be smaller.

We regress the outcome variable on the set of proxy variables:

y =

M∑
k=1

bxk + ν, (A.2)

where we allow the number of proxies to be either fewer, more, or the same as
the number of latent variables in the population regression. For simplicity, in
what follows all variables are expressed as deviations from their means.

A.2 Coefficient sums in latent variable models

This section discusses some properties of the sum of coefficient estimates from
Eq. (A.2).

Proposition 1. Single coefficient estimates from the proxy regression are biased
in unknown directions:

plim b̂k S βk.
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For simplicity, let K = M = 2, and Cov(x∗1, x
∗
2) = ρ. Then the coefficient

estimates are1

plim b̂1 = β1 −
β1λ1 − ρβ2λ2

1− ρ2
,

plim b̂2 = β2 −
β2λ2 − ρβ1λ1

1− ρ2
.

The signs of the bias terms depend on the relative size of the parameters, mea-
surement error variances, and the covariance.2

Proposition 2. Under weak assumptions, the sum of coefficients from the proxy
regression is a lower bound on the sum of parameters in the population regres-
sion:

plim

M∑
k=1

b̂k ≤
K∑
k=1

βk.

We discuss this result in several steps. First, we analyze the simple two-
variable case in order to build intuition. We then derive more general expressions
under somewhat restrictive assumptions. Finally, we relax these assumptions in
a Monte Carlo simulation.

Two variables If we only use the first proxy, y = bx1 + ν, it is easy to show
that3

plim b̂ = β1(1− λ1) + β2ρ ≤ β1 + β2.

If we instead use both proxies and take the sum of coefficients, we get4

plim
(
b̂1 + b̂2

)
= β1 + β2 −

1

1 + ρ
(β1λ1 + β2λ2) ≤ β1 + β2.

In the special case where β2 = 0, this simplifies to

plim
(
b̂1 + b̂2

)
= β1

(
1− λ1

1 + ρ

)
≤ β1.

If we relax Assumption 4 and allow the measurement errors to be correlated,
the coefficient sum becomes5

plim
(
b̂1 + b̂2

)
= β1 + β2 −

1

1 + ρ+ σ
(β1(λ1 + σ) + β2(λ2 + σ)).

This is still a lower bound either if σ ≥ 0, or if σ < 0 and Assumptions 5 and 6
hold.6

1. This follows from setting M = K = 2 in Eq. (A.10). See also, e.g., Maddala (1992,
pp. 456–457).

2. This result holds for more than two proxies; see Eqs. (A.10) and (A.14).
3. To see this, set M = 1 and K = 2 in Eq. (A.16)
4. Setting M = K = 2 in Eq. (A.12).
5. Set M = K = 2 in Eq. (A.11).
6. Start with the numerator of the bias term. By the Cauchy-Schwarz inequality, |σ| ≤√
λ1λ2. Assume the worst-case scenario, −σ =

√
λ1λ2. Then β1(λ1 + σ) + β2(λ2 + σ) =(

β1
√
λ1 − β2

√
λ2
)(√

λ1 −
√
λ2
)
, which is positive by Assumptions 5 and 6. The denominator

is always positive since |σ| ≤ 1. From this, it follows that the bias term is always negative.
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Many variables We now turn to the more general case, where we allow for
arbitrary numbers of proxies and latent variables. We also allow the measure-
ment errors to be positively correlated across variables. In order for analytical
results to be feasible, however, we make the admittedly strong assumptions
that all covariances between latent variables and measurement errors are con-
stant. We relax these assumptions below, where we present from a Monte Carlo
simulation.

Assumption 7 (Constant positive covariances between latent variables).

ρk,k′ = ρ ≥ 0, ∀k 6= k′.

Assumption 8 (Constant positive covariances between measurement errors).

σk,k′ = σ ≥ 0, ∀k 6= k′.

If M ≥ K, the sum of coefficients takes the form7

plim

M∑
k=1

b̂k =

K∑
k=1

βk −
1

1 + (M − 1)(ρ+ σ)

(
K∑
k=1

λkβk + (M − 1)σ

K∑
k=1

βk

)
.

If instead M < K, the sum of coefficients takes the form

plim

M∑
k=1

b̂k =

K∑
k=1

βk

− 1

1 + (M − 1)(ρ+ σ)

(
M∑
k=1

λkβk + (1− ρ)

K∑
k=M+1

βk + (M − 1)σ

K∑
k=1

βk

)
.

In both cases, the second term is always negative.

Monte Carlo simulations Assumptions 7 and 8 are unrealistic. For the
simulations, we relax them and allow for a completely arbitrary correlation
structure among the latent variables and the measurement errors, respectively,
with the only restriction being that all correlations are positive.

We generate data according to Eq. (A.1), where

βk, λk ∼ U(0, 1),

ε ∼ N (0, 1),

X∗ ∼ N (0,Σ∗),

U ∼ N (0,Σ),

7. See Section A.5 for the full derivations of these equations.
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where Σ∗ is the covariance matrix for the latent variables, with diagonal entries
Σ∗kk = 1 − λk and randomly drawn positive off-diagonal entries. The measure-
ment errors have covariance matrix Σ, with diagonal entries Σkk = λk and
arbitrary non-negative off-diagonal entries.8

We perform r = 1, 000 simulations, with n = 500, 000 observations in each
replication. We arbitrarily set K = 5 and M = 10, and estimate one OLS
regression for each m ∈ {1, 2, . . . ,M}.

Figure A.1 shows the results from these simulations. The horizontal axes
show the true sum of parameters, and the vertical axes the sum of OLS es-
timates. The black points show estimates with only one proxy for 5 latent
variables; the orange points show estimates with 5 proxies for 5 latent variables;
and the blue dots show estimates with 10 proxies for 5 latent variables. Panel A
shows results for uncorrelated measurement errors, while the errors are allowed
to be positively correlated in Panel B.

The simulations confirm our analytical results. Three features of the results
are worth noting — first, the sum of estimated coefficients is always below the
true sum of parameters, validating the lower bound result. Second, the lower
bound is tighter when more proxies are used.9 Third, the bias increases when
measurement errors are correlated.

Panel C of Fig. A.1 shows simulations where we relax the assumption of
positive correlations, and allow for a completely unrestricted correlation ma-
trix between measurement errors, including negative correlations. These results
show that the sum of estimates is no longer a sharp lower bound. However, the
estimated sum of coefficients only exceeds the true parameter sum in rare cases,
and only when there are more proxies than latent variables. Furthermore, the
sum of coefficients never exceeds the true sum more than marginally.

Finally, Panel D shows results from a simulation where we allow unrestricted
correlations between measurement errors, but impose Assumptions 5 and 6, so
that both the true parameters and the measurement error variances are non-
increasing with the order of the variable. As for the cases considered in Panels
A and B, the sum of coefficients is a lower bound.

Proposition 3. The bias in the sum of coefficients shrinks when more proxies
are added to the regression.

Many variables Maintaining Assumptions 7 and 8, let b̂sumM be the sum of

coefficients from a regression with M proxies, and b̂sumM+1 the sum of coefficients

8. The covariance matrices are generated in the following steps. First, we use the algorithm
in Joe (2006) to draw a random correlation matrix from a uniform distribution of all positive
definite correlation matrices. To impose positive correlations, we then replace each entry by its
absolute value, and apply the algorithm in Higham (2002) to find the neares positive definite
matrix. Finally, we multiply element i, j of the correlation matrix by

√
(1− λi)(1− λj) (for

the latent variables) or
√
λiλj (for the measurement errors) to get the appropriate covariance

matrix.
9. A partial exception is when measurement errors are positively correlated (Panel B). Then

additional proxies do not seem to add information after M = K.
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Panel C.
Arbitrarily correlated errors

Panel D.
Arbitrarily correlated errors, restricted

Panel A.
Uncorrelated errors

Panel B.
Positively correlated errors

1 2 3 4 1 2 3 4

0

1

2

3

4

0

1

2

3

4

Sum of true parameters

S
um

 o
f O

LS
 c

oe
ffi

ci
en

ts

M = 1 M = K M > K

Figure A.1: Sum of coefficients as lower bound, simulation results
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from a regression with M + 1 proxies. If M ≥ K, the change in the sum of
coefficients when adding a proxy to the regression is

b̂sumM+1 − b̂sumM =
ρ
∑K
k=1 λkβk − σ

∑K
k=1(1− λk)βk

(1 +M(ρ+ σ))(1 + (M − 1)(ρ+ σ))
. (A.3)

If instead M < K, the change in the sum of coefficients is

b̂sumM+1 − b̂sumM =
1

(1 +M(ρ+ σ))(1 + (M − 1)(ρ+ σ))

×

[
(ρ+ σ)

M∑
k=1

λkβk + (ρ+ σ)(1− ρ)

K∑
k=M+2

βk − σ
K∑
k=1

βk

+
[
(1 +M(ρ+ σ))(1− ρ)− (1 + (M − 1)(ρ+ σ))λM+1

]
βM+1

]
. (A.4)

If σ = 0, Eq. (A.3) is positive, and Eq. (A.4) is positive under Assump-
tion 6.10 Furthermore, it follows from Eq. (A.12) that the estimator is consistent
as M →∞, since the bias term disappears in the limit.

If σ > 0, the proposition holds when σ is small relative to the other model
parameters, but it is difficult to characterize the precise conditions in a mean-
ingful way.

Monte Carlo simulation Using the same simulations as for Proposition 2
above, we study how the estimator behaves as we sequentially add more proxies
to the regression. Figure A.2 shows the distributions of changes in the sum of
coefficient for each additional proxy variable, as a share of the true parameter
sum (points are medians). For example, the left-most distribution plot in each
panel shows how the sum of coefficients changes when we move from a regression
with only one proxy to one with two proxies. In all cases, the true underlying
regression has K = 5 variables.

As long as the added proxies correspond to latent variables in the population
regression (M ≤ K), adding more proxies essentially always improves the esti-
mator. Once we have one proxy for each latent variable, adding more proxies
can cause the sum of coefficients to increase or decrease (M > K). With un-
correlated measurement errors, further proxies almost always tend to increase
the sum (Panel A), while this is not the case when errors are allowed to be
correlated (Panels B–D).

10. If σ = 0, the expression is positive if (1 + Mρ)(1 − ρ) − (1 + (M − 1)ρ)λM+1 is non-
negative. This term can be rewritten as (1+Mρ)[(1−λM+1)−ρ]+ρλM+1, which is positive if
(1−λM+1)−ρ is non-negative. Notice that 1−λM+1 = Var(x∗M+1), and remember that by the

Cauchy-Schwartz inequality, |Cov(X,Y )| ≤
√

Var(X) Var(Y ). Since ρ = Cov(x∗k, x
∗
k′ ), ∀k 6=

k′, and furthermore ρ > 0, it follows that ρ ≤
√

(1− λM+1)(1− λk),∀k. By Assumption 6,

1− λ1x∗1 has smaller or equal variance as x∗M+1, so that 1− λM+1 ≥
√

(1− λM+1)(1− λ1),
and therefore ρ ≤ 1− λM+1.
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Panel D.
Arbitrarily correlated errors, restricted
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Panel B.
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Figure A.2: Bias reduction as number of proxies increases, simulation results
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Furthermore, in Panels A–B, each added proxy on average contributes less
than the previous ones. It is also clear that correlated measurement errors slows
down the rate of convergence to the true parameter sum.

A.3 Relation between sum of coefficients and R2

The coefficient of determination is defined as

R2 =
Var(ŷ)

Var(y)
.

Consider a univariate regression model,

y = bx+ ε,

with standardized variables (Var(y) = Var(x) = 1). This regression has R2 =

Var(ŷ) = Var(b̂x) = b̂2, which is simply the square of the OLS estimator.
In a multivariate regression with K regressors, the coefficient of determina-

tion is

R2 = Var(ŷ) = Var

(
K∑
k=1

b̂kxk

)
=

K∑
k=1

b̂2k +
∑
k 6=s

b̂k b̂s Cov(xk, xs).

For comparison, we can calculate the square of the sum of coefficients:(
K∑
k=1

b̂k

)2

=

K∑
k=1

b̂2k +
∑
k 6=s

b̂k b̂s.

With standardized variables, the Cauchy-Schwarz inequality guarantees that
|Cov(xk, xs)| ≤ 1 always holds. It follows that

R2 ≤

(
K∑
k=1

b̂k

)2

.

In words, the coefficient of determination is always (weakly) smaller than the
squared sum of coefficients. This is a general results that only relies on using
standardized variables. In a situation where the sum of coefficients is a lower
bound on a true parameter of interest, this means that R2 has a (weakly) larger
downward bias than the sum of coefficients once they are transformed to a
comparable scale.

A.4 IV estimation in latent variable models

We now turn to instrumental variables estimation. Assume that the true model
is Eq. (A.1), and we use all proxies {xk : 2 ≤ k ≤ K} as instruments for x1 in
a two-stage least squares regression. This amounts to instrumenting parental
outcomes with outcomes of more distant relatives.

Proposition 4. The 2SLS estimator provides an upper bound on the sum of
population parameters.
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Two variables Assume the true model is y = β1x
∗
1+β2x

∗
2+ε, and we estimate

the regression y = bx1 + ν, using x2 as an instrument for x1.
The IV estimator is

b̂IV =
Cov(x2, y)

Cov(x2, x1)
=
β1ρ+ β2(1− λ2)

ρ+ σ
.

If measurement errors are uncorrelated, this simplifies to β1 + β2
1−λ2

ρ . Under
Assumption 6, the IV estimator is an upper bound on the true sum of coeffi-
cients: b̂IV ≥ β1 + β2.11

When the measurement errors are allowed to be correlated with each other,
this result no longer holds.

Many variables Under Assumptions 4, 7 and 8, the 2SLS estimator has
probability limit

plim b̂IV = β1 +

K∑
k=2

(1− λk) + (K − 2)ρ

(K − 1)ρ
βk. (A.5)

This is an upper bound on the true coefficient sum under Assumptions 2 and 6.12

Proposition 5. If the true model is AR(1), 2SLS provides a consistent estimate
of the true parameter.

This follows trivially from that fact that, if βk = 0, k ∈ {2, . . . ,K}, the IV
exclusion restriction is satisfied.

Monte Carlo simulation Finally, Fig. A.3 presents simulations similar to
those discussed in Section A.2. All simulations maintain Assumption 4.13 The
horizontal axis shows the sum of coefficients in the true model, while the vertical
axis shows the IV estimates. In all three models, we use x2 as an instrument
for x1.

Panel A shows estimates from a model where β2 = 0, so that the exclusion
restriction holds. As expected, the estimates cluster around the 45 degree line,
reflecting that the estimator is consistent.

Panel B shows what happens when we allow β2 ≥ 0, so that the exclusion
restriction does not hold. Now the estimates spread out much more, and the IV
tends to overestimate the sum of coefficients. It is worth noting that, although
there is a substantial number of simulation draws in which the IV underestimates
the true coefficient sum, the size of the bias is generally quite small.

11. By the Cauchy-Schwarz inequality, ρ ≤
√

(1− λ1)(1− λ2). Under Assumption 6, this
implies that 1− λ2 ≥ ρ, and the result follows.

12. See Section A.5.3 for the proof.
13. In order to avoid IV regressions with extremely weak first stages, we have imposed two

additional restrictions: first, the variance of the measurement errors, λk, is not allowed to go
above 0.8; and second, the correlations between the latent variables is required to be at least
0.5.
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Finally, Panel C shows estimates with an endogenous instrument, but where
we impose that the measurement error is smaller in x2 than in x1 (Assump-
tion 6). Now the IV estimator gives a strict upper bound for the true coefficient
sum.

Panel C. Endogenous instrument, restricted

Panel A. Endogenous instrument Panel A. Exogenous instrument
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Figure A.3: Instrumental variables as upper bound, simulation results
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A.5 Derivations

In this section, we derive expressions when m and k are unrestricted positive
integers. We maintain Assumptions 7 and 8. All probability limits are taken as
N →∞.

We can write the observed regression model as y = Xb + ν, where b is the
M ×1 vector of coefficients to be estimated, X is the N ×M matrix of observed
proxies, and ν is a vector of regression errors. The proxies can be written as

X = X∗ + U,

where X∗ is the matrix of latent variables, and U is the matrix of measurement
errors.

The vector of OLS estimates is

b̂ = (X′X)
−1

X′y = (X∗′X∗ + X∗′U + U′X∗ + U′U)−1(X∗′y + U′y). (A.6)

Applying the continuous mapping theorem, and assuming finite first- and
second-order moments, it is easy to show that

N−1X∗′X∗
p→

1− λ1 · · · ρ
...

. . .
...

ρ · · · 1− λM

 ,

N−1U′U
p→

λ1 · · · σ
...

. . .
...

σ · · · λM

 .
Furthermore, by Assumption 1, N−1X∗′U

p→ 0 and N−1UX∗′
p→ 0.

It follows that

N−1(X∗′X∗ + X∗′U + U′X∗ + U′U)
p→
[
(1− ρ− σ)IM + (ρ+ σ)1M1′M

]
,

It follows that the inverse term in Eq. (A.6) converges to

N(X∗′X∗ + X∗′U + U′X∗ + U′U)−1
p→
[
(1− ρ− σ)IM + (ρ+ σ)1M1′M

]−1
.

To find the inverse, we use the Sherman-Morrison formula (e.g., Eq. (2) in
Bartlett 1951):

(A + uv′)−1 = A−1 − A−1uv′A−1

1 + v′A−1u
, (A.7)

to get

N(X∗′X∗ + X∗′U + U′X∗ + U′U)−1

p→
(

1

1− ρ− σ
IM −

ρ+ σ

(1− ρ− σ)(1 + (M − 1)(ρ+ σ))
JM

)
. (A.8)

We treat the two cases M ≥ K and M < K separately.
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A.5.1 More proxies than latent variables

When M ≥ K, the last term in Eq. (A.6) is

N−1(X∗′y + U′y)
p→

Cov(x∗1, y)
...

Cov(x∗M , y)

 =

Cov(x∗1,
∑K
k=1 βkx

∗
k)

...

Cov(x∗M ,
∑K
k=1 βkx

∗
k)

+ op(N)

=



(1− λ1)β1 + ρ
∑K
k 6=1 βk

...

(1− λk)βk + ρ
∑K
k 6=k βk

ρ
∑K

1 βk
...

ρ
∑K

1 βk


.

(A.9)

Substituting Eqs. (A.8) and (A.9) in Eq. (A.6) we have

plim b̂ =
1

1− ρ− σ



(1− λ1)β1 + ρ
∑K
k 6=1 βk

...

(1− λk)βk + ρ
∑K
k 6=k βk

ρ
∑K

1 βk
...

ρ
∑K

1 βk



− ρ+ σ

(1− ρ− σ)(1 + (M − 1)(ρ+ σ))


∑K
k=1(1− λk)βk + (M − 1)ρ

∑K
k=1 βk

...∑K
k=1(1− λk)βk + (M − 1)ρ

∑K
k=1 βk

 .
The coefficient estimate for proxy k ≤M is

plim b̂k =
1− ρ

1− ρ− σ
βk −

1

1− ρ− σ
λkβk

+

(
ρ

1− ρ− σ
− (ρ+ σ)(1 + (M − 1)ρ)

(1− ρ− σ)(1 + (M − 1)(ρ+ σ))

) K∑
k=1

βk

+
ρ+ σ

(1− ρ− σ)(1 + (M − 1)(ρ+ σ))

K∑
k=1

λkβk.

When σ = 0, this simplifies to

plim b̂k = βk −
1

1− ρ
λkβk +

ρ

(1− ρ)(1 + (M − 1)ρ)

K∑
k=1

λkβk. (A.10)
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The sum of coefficients is

plim

M∑
k=1

b̂k

=

K∑
k=1

βk −
1

1 + (M − 1)(ρ+ σ)

(
K∑
k=1

λkβk + (M − 1)σ

K∑
k=1

βk

)
. (A.11)

In the special case where σ = 0, this simplifies to

plim

M∑
k=1

b̂k =

K∑
k=1

βk −
1

1 + (M − 1)ρ

K∑
k=1

λkβk. (A.12)

A.5.2 Fewer proxies than latent variables

When M < K, the second term of Eq. (A.6) can be rewritten as

N−1(X∗′y + U′y)
p→


(1− λ1)β1 + ρ

∑K
k 6=1 βk

...

(1− λM )βM + ρ
∑K
k 6=M βk

 . (A.13)

Substitute Eqs. (A.8) and (A.13) in Eq. (A.6):

plim b̂ =
1

1− ρ− σ


(1− λ1)β1 + ρ

∑K
k 6=1 βk

...

(1− λM )βM + ρ
∑K
k 6=M βk


− ρ+ σ

(1− ρ− σ)(1 + (K − 1)(ρ+ σ))

×

(1− ρ)
∑M
k=1 βk +Mρ

∑K
k=1 βk −

∑M
k=1 λkβk

...

(1− ρ)
∑M
k=1 βk +Mρ

∑K
k=1 βk −

∑M
k=1 λkβk

 .
A single coefficient is

plim b̂k =
1

1− ρ− σ

(
(1− λk)βk + ρ

K∑
k=1

βk − ρβk

)

− ρ+ σ

(1− ρ− σ)(1 + (K − 1)(ρ+ σ))(
(1− ρ)

M∑
k=1

βk +Mρ

K∑
k=1

βk −
M∑
k=1

λkβk

)
,

15



which simplifies to

plim b̂k =
1

1− ρ

(
(1− λk)βk + ρ

K∑
k=1

βk − ρβk

)
− ρ

(1− ρ)(1 + (K − 1)ρ)(
(1− ρ)

M∑
k=1

βk +Mρ

K∑
k=1

βk −
M∑
k=1

λkβk

) (A.14)

when σ = 0.
The sum of coefficients is

plim

M∑
k=1

b̂k =

K∑
k=1

βk −
1

1 + (M − 1)(ρ+ σ)

×

(
M∑
k=1

λkβk + (1− ρ)

K∑
k=M+1

βk + (M − 1)σ

K∑
k=1

βk

)
. (A.15)

Setting σ = 0, this simplifies to

plim

M∑
k=1

b̂k =

K∑
k=1

βk −
∑M
k=1 λkβk + (1− ρ)

∑K
k=M+1 βk

1 + (M − 1)ρ
. (A.16)

A.5.3 Instrumental variables estimator

This section shows the derivation of Eq. (A.5).
Assume the true model is Eq. (A.1), and we use all proxies xk, 2 ≤ k ≤ K,

as instruments for the first proxy, x1, in a two-stage least squares regression.
The matrix of instruments is

Z = Z∗ + V,

Z∗ =
[
x∗2 · · · x∗K

]
,

V =
[
u2 · · · uK

]
.

The 2SLS estimator is

b̂IV = (x′1PZx1)
−1

x′1PZy, (A.17)

where

PZ = Z(Z′Z)−1Z′

= (Z∗ + V)(Z∗′Z∗ + Z∗′V + V′Z∗ + V′V)
−1

(Z∗′ + V′)
(A.18)
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The inner term in Eq. (A.18) is essentially the same as in Eq. (A.8), so we
have

N(Z∗′Z∗ + Z∗′V + V′Z∗ + V′V)
−1

p→
(

1

1− ρ
IK−1 −

ρ

(1− ρ)(1 + (K − 2)ρ)
JK−1

)
.

Notice that

N−2u′AB′v = N−2
K∑
k=1

N∑
i=1

uiai,k

N∑
l=1

vlbl,k

p→
K∑
k=1

Cov(u, ak) Cov(v, bk), (A.19)

and

N−2u′AJKB′v = N−2

(
K∑
k=1

N∑
i=1

uiai,k

)(
K∑
s=1

N∑
l=1

vlbl,s

)
p→

K∑
k=1

Cov(u, ak)

K∑
s=1

Cov(v, bs). (A.20)

Furthermore, by Assumption 1,

N−1u′1A
p→ 0,

N−1A′u1
p→ 0,

where A is Z∗ or V.
Using these results, it’s easy to see that

N−2x∗′1 Z∗Z∗′x∗1
p→ (K − 1)ρ2,

N−2x∗′1 Z∗JK−1Z
∗′x∗1

p→ (K − 1)2ρ2,

N−2x∗′1 VZ∗′x∗1 = N−2x∗′1 Z∗V′x∗1
p→

K∑
k=2

Cov(x∗1, uk) Cov(x∗1, x
∗
k) = 0,

N−2x∗′1 VJK−1Z
∗′x∗1 = N−2x∗′1 Z∗Jk−1V

′x∗1

p→

(
K∑
k=2

Cov(x∗1, uk)

)(
K∑
k=2

Cov(x∗1, x
∗
k)

)
= 0,

N−2x∗′1 VV′x∗1
p→

K∑
k=2

Cov(x∗1, uk)2 = 0,

N−2x∗′1 VJK−1V
′x∗1

p→

(
K∑
k=2

Cov(u1, uk)

)(
K∑
k=2

Cov(u1, uk)

)
= 0.
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Applying these results and the continuous mapping theorem, it can be shown
that

N−1x′1PZx1
p→ (K − 1)ρ2

1 + (K − 2)ρ
.

For the second term of Eq. (A.17), first note that

K∑
k=2

Cov(y, x∗k) =

K∑
k=2

Cov

(
K∑
s=1

βsx
∗
s, x
∗
k

)

=

K∑
k=2

K∑
s=1

βs Cov (x∗s, x
∗
k)

= (K − 1)ρβ1 +

K∑
k=2

(1− λk)βk + (K − 2)ρ
K∑
k=2

βk.

Using this and Eqs. (A.19) and (A.20), we have

N−2x∗′1 Z∗Z∗′y
p→

K∑
k=2

Cov(x∗1, x
∗
k) Cov(y, x∗k)

= ρ

(
(K − 1)ρβ1 +

K∑
k=2

(1− λk)βk + (K − 2)ρ

K∑
k=2

βk

)
,

N−2x∗′1 Z∗JK−1Z
∗′y

p→
K∑
k=2

Cov(x∗1, x
∗
k)

K∑
s=2

Cov(y, x∗s)

= ρ(K − 1)

×

(
(K − 1)ρβ1 +

K∑
k=2

(1− λk)βk + ρ(K − 2)

K∑
k=2

βk

)
,

N−2x∗′1 VZ∗′y1 = N−2x∗′1 Z∗V′y1
p→ 0,

N−2x∗′1 VJK−1Z
∗′y1 = N−2x∗′1 Z∗JK−1V

′y1
p→ 0,

N−2x∗′1 VV′y1
p→ 0,

N−2x∗′1 VJK−1V
′y1

p→ 0.

This in turn yields

N−1x′1PZy1

p→ ρ

1 + (K − 2)ρ

(
(K − 1)ρβ1 +

K∑
k=2

(1− λk)βk + (K − 2)ρ

K∑
k=2

βk

)
.
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Putting it all together, the 2SLS estimator converges to

plim b̂IV =

(
(K − 1)ρ2

1 + (K − 2)ρ

)−1
ρ

1 + (K − 2)ρ

×

(
(K − 1)ρβ1 +

K∑
k=2

(1− λk)βk + (K − 2)ρ

K∑
k=2

βk

)

= β1 +

K∑
k=2

(1− λk) + (K − 2)ρ

(K − 1)ρ
βk.

(A.21)

First, assume the true model is AR(1) — i.e., βk = 0, ∀2 ≤ k ≤ K. Then the

exclusion restriction holds, and the IV estimator is unbiased (plim b̂IV = β1).
Second, assume instead the extended model is true, so that βk > 0,∀k. Then

the exclusion restriction fails, and the IV estimator is upwards biased. Further-
more, the Cauchy-Schwarz inequality states that ρ ≤

√
(1− λk)(1− λs),∀k, s.

This implies that (1 − λk) ≥ ρ for all but the largest λk. From Assumption 6,
it then follows that

K∑
k=2

(1− λk) + (K − 2)ρ

(K − 1)ρ
βk ≥

K∑
k=2

βk,

and thus

plim b̂IV ≥
K∑
k=1

βk.

This means that the IV estimate is an upper bound on the sum of parameters in
the true model (and the bound becomes exact if the exclusion restriction holds).
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B Variable definitions

This appendix provides additional details on variable definitions and construc-
tion.

B.1 Children

The grade point average (GPA) is constructed from the national grade 9 regis-
ters, using grades in all compulsory subjects. The original scores were percentile
ranked by birth cohort, in order to take changes in the grading over time into
account.

Data on highest attained educational level is obtained from Swedish educa-
tion registers, available since 1985. The years of schooling variable for the child
generation is defined as follows: nine for compulsory schooling (Grundskola),
11 for short high school, 12 for long high school, 14 for short university, 15.5
for long university and 19 for a PhD. We use the latest educational register
available, which is for 2009. If education for the individual is missing in 2009,
we use 2008, and so forth.

B.2 Parents and other ancestor generations

Data on highest attained educational level is obtained from Swedish education
registers, available since 1985. In addition, information is used from the Census
1970. The years of schooling variable for the parental (and other ancestor)
generations is defined as follows: seven for (old) primary school (Folkskola),
nine for (new) compulsory schooling (Grundskola), 9.5 for (old) post-primary
school (Realskola), 11 for short high school, 12 for long high school, 14 for short
university, 15.5 for long university and 19 for a PhD. We use information from
the latest educational register available.

The income measure we use is calculated as the sum of gross labor earnings,
income from businesses, and unemployment benefits. Data is from the IoT-
register. Average log income is calculated in the following way: we use income
data for all available years for each individual between ages 30 and 60; we take
logs and residualize by adjusting for both birth cohort and income year fixed
effects; we then take the average of the residuals for each individual. Lastly, we
take averages among members within the dynasty category

The Cambridge Social Interaction and Stratification (CAMSIS) measure of
social distance uses occupations of spouses to create an index (0–100) of So-
cial stratification. The basic idea is that individuals who are similar in terms
of social status are more likely to marry each other.1 While there are many
occupation-based social classifications, the CAMSIS scale has two advantages

1. The CAMSIS score is constructed by analyzing a frequency cross-table of husbands’ and
wives’ occupations. This table maps out the space of social distances, and from this, it is
possible to locate each occupation along an index of social status or stratification. We use
the Swedish CAMSIS scale based on data for 2001–2007 prepared by Erik Bihagen and Paul
Lambert, available at http://www.camsis.stir.ac.uk/Data/Sweden90.html.
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for our purposes—first, unlike categorical classifications of social class schemes
(e.g., Erikson, Goldthorpe, and Portocarero 1979), it is continuous; second,
unlike the Socio-Economic Index of occupational status (ISEI) and similar mea-
sures (Ganzeboom, De Graaf, and Treiman 1992), it does not rely on income or
education in its construction. Hence, the CAMSIS scale provides independent
information beyond that contained in our schooling and income variables.2
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C Additional results for adoptees analysis

C.1 Descriptive statistics

To increase the probability of meeting assumptions 1, 2, and 4 in Section 5.4, we
have restricted the sample to international adoptees and to those adopted before
their first birthday.1 We show summary statistics for the sample of adoptees in
Table C.1. If we compare these figures to those in the population (Table D.1),
we see that adoptive parents are on average more educated, have higher income,
and score higher on the social stratification index, but that the children’s GPA
is very similar. The adoptive parents are on average also born earlier, whereas
the adopted children are similarly aged to the population of children.

Table C.1: Summary statistics, adoptees sample

Years of Log income Social Obs./ Birth
schooling (residualized) stratification child year

Child generation

Child (GPA) 46.14 1988.54
(26.42) (3.90)

Parental generation

Parents 12.12 .12 51.70 1.99 1956.48
(2.01) (.36) (9.83) (.08) (3.54)

Aunts and uncles 11.94 .02 49.21 4.24 1958.50
(1.56) (.34) (8.52) (2.18) (5.15)

Spouses of 12.07 .05 49.83 3.56 1958.16
aunts/uncles (1.67) (.34) (9.17) (1.85) (5.50)

Parents’ cousins 12.29 -.01 47.00 7.42 1966.25
(1.35) (.38) (7.65) (5.63) (4.05)

Spouses of 12.24 .03 46.78 5.61 1964.84
parents’ cousins (1.35) (.37) (8.32) (4.36) (4.34)

Siblings of spouses 11.86 -.04 48.83 6.99 1957.96
of aunts/uncles (1.59) (.36) (7.85) (4.85) (6.94)

Note: Cells show means with standard deviations in parentheses. N = 903 observations.
“Obs./child” shows number of observations with non-missing data on all variables. The first
row shows grade point average for the child in the “years of schooling” column.

1. The adoption age is calculated as the difference between the immigration date and the
birth date. Both dates are obtained from Swedish administrative registers.
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C.2 Tests of quasi-randomization of adoptees

Following the previous literature2 we investigate the quasi-randomization as-
sumption for foreign-born adoptees by regressing variables determined prior to
adoption on measures for the parents and the other dynasty categories (in our
case years of schooling, income, and social stratification). The results from
these tests are shown in Table C.2.3 The pre-determined outcome variables are
child gender (Panel A), and age of adoption in months (Panel B). We show
results without and with controls for region-of-birth fixed effects. The mag-
nitudes of estimates are in all cases extremely small: one year of additional
parental schooling (about 0.5 SD) is associated with one-tenth of a month (3
days) lower adoption age; and with the probability of the child being a girl by at
most 2 percent.4 We conclude that we cannot reject that international adoptees
in Sweden (adopted at infancy) during this time are in effect quasi-randomly
assigned to their adopting parents.5

C.3 Estimation results using matched samples

Table C.3 shows estimates of our main model for a sample of biological children
that has been matched to be similar to the adoptees sample with regard to
the distribution across birth cohorts for children and parents. Table C.4 shows
sample balance before and after matching.

2. See Sacerdote 2007; Fagereng, Mogstad, and Rønning 2018; Holmlund, Lindahl, and
Plug 2011; Lundborg, Nordin, and Rooth 2018.

3. To facilitate comparison with our other results, the variables are standardized using the
means and standard deviations from the full population sample.

4. For older adoptees (not adopted within 12 months) we do see evidence of systematic
placement, likely because those who wanted to adopt quicker could do so by adopting older
children, which probably also meant that these adoption families were of higher SES on
average.

5. The excess demand for infant adoptees is probably what made the adoptions condi-
tionally quasi-random in Sweden, since it is very costly for a family to decline a child in
terms of waiting time. Holmlund, Lindahl, and Plug (2008, 2011) and Lundborg, Nordin, and
Rooth (2018) investigate quasi-randomness for children adopted by Swedish parents and born
abroad mainly during the 1970s. Both of these papers find some evidence of selection using
tests similar to ours, but conclude that magnitudes of the estimates are very small.
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Table C.2: Test of quasi-randomization of adopted children

(1) (2) (3) (4) (5) (6)

Panel A: Female child indicator

Sum of coefficients -.023 -.019 -.010 -.010 -.004 -.002
(.014) (.018) (.019) (.022) (.023) (.025)

Panel B: Female child indicator, region F.E.

Sum of coefficients -.008 -.002 .012 .013 .019 .020
(.015) (.019) (.020) (.022) (.024) (.025)

Panel C: Adoption age in months

Sum of coefficients -.051 -.071 -.081 -.066 -.096 -.100
(.080) (.100) (.110) (.127) (.134) (.139)

Panel D: Adoption age in months, region F.E.

Sum of coefficients -.096 -.177 -.218 -.199 -.234 -.249
(.076) (.093) (.105) (.120) (.126) (.131)

Parents X X X X X X

Aunts and uncles X X X X X

Spouses of aunts/uncles X X X X

Parents’ cousins X X X

Spouses of parents’ cousins X X

Siblings of spouses X
of aunts/uncles

Note: Each cell shows the sum of coefficients from a separate regression on years of school-
ing for the indicated relatives. N = 903 observations. Data is restricted to foreign-born
adoptees, with an age at adoption of at most 12 months. Dependent variable is an indicator
for female child in Panels A–B, and child’s age at adoption in months in Panels C–D. All
regressions include linear and quadratic controls for average years of birth for each included
type of relative and birth year indicators for the children, and Panels B and D include fixed
effects for region-of-birth. Robust standard errors in parentheses.
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Table C.3: Biological children, matched to adoptees sample

(1) (2) (3) (4) (5) (6)

Panel A: Main estimates

Parents .345 .288 .284 .277 .276 .275
(.003) (.003) (.003) (.003) (.003) (.003)

Aunts and uncles .127 .112 .106 .105 .102
(.003) (.004) (.004) (.004) (.004)

Spouses of .033 .030 .030 .021
aunts/uncles (.004) (.003) (.003) (.004)

Parents’ cousins .049 .042 .041
(.003) (.003) (.003)

Spouses of parents’ .015 .015
cousins (.003) (.003)

Siblings of spouses .025
of aunts/uncles (.003)

Sum of coefficients .345 .415 .428 .462 .468 .479
(.003) (.003) (.004) (.004) (.004) (.005)

R2 .159 .174 .175 .177 .177 .178

Panel B: Lubotsky-Wittenberg estimates

LW estimates .448 .512 .526 .557 .563 .570
(.002) (.002) (.002) (.002) (.003) (.003)

Note: Each column shows results from a separate regression of child’s grade point
average on parental generation outcomes. N = 278,277 observations. The sample
has been matched to the adoptees sample using exact matching on year of birth
and gender of the child, and average year of birth for the parents rounded to the
nearest integer. Parental generation variable is years of schooling in Panel A, and
the LW index of years of schooling, log income, and social stratification in Panel
B. Robust standard errors in parentheses
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Table C.4: Balance before and after matching to adoptees sample

Birth year Years of schooling Log income Social stratification

Adopt. ∆main ∆match Adopt. ∆main ∆match Adopt. ∆main ∆match Adopt. ∆main ∆match

Child 1988.54 .46 .00

Parents 1956.48 -4.41 -.04 12.12 .51 .31 .12 .16 .16 51.70 4.93 2.25

Parents’ siblings 1958.50 -3.21 -.02 11.94 .28 .24 .02 .08 .06 49.21 2.48 1.14

Spouses of 1958.16 -2.81 -.04 12.07 .30 .26 .05 .06 .05 49.83 2.63 1.13
aunts/uncles

Parents’ cousins 1966.25 -1.32 -.46 12.29 .15 .12 -.01 .01 -.00 47.00 .97 .54

Spouses of 1964.84 -1.03 -.39 12.24 .11 .08 .03 .01 -.00 46.78 .61 .17
parents’ cousins

Siblings of spouses 1957.96 -2.31 .06 11.86 .19 .21 -.04 .01 -.00 48.83 1.52 .67
of aunts/uncles

Note: Each set of columns show averages in the adoptees sample; the difference between the average for the adoptees and the average in the main
sample; and the difference between the adoptees average and the average in the matched sample. The matched sample has been matched to the adoptees
sample using exact matching on year of birth and gender of the child, and average year of birth for the parents rounded to the nearest integer.
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D Additional tables and figures

Table D.1: Summary statistics

Years of Log income Social Obs./ Birth
schooling (residualized) stratification child year

Child generation, N = 541,459

Child (GPA) 46.71 1988.07
(27.96) (4.78)

Parental generation, N = 541,459

Parents 11.61 -.04 46.78 2.00 1960.89
(1.69) (.49) (9.75) (.05) (4.64)

Aunts and uncles 11.66 -.05 46.73 4.50 1961.71
(1.45) (.40) (8.38) (2.25) (5.70)

Spouses of 11.77 -.01 47.20 3.60 1960.97
aunts/uncles (1.50) (.39) (9.07) (1.87) (6.03)

Parents’ cousins 12.14 -.02 46.03 10.11 1967.57
(1.18) (.34) (7.14) (7.39) (3.87)

Spouses of 12.13 .02 46.16 7.34 1965.87
parents’ cousins (1.23) (.33) (7.83) (5.58) (4.15)

Siblings of spouses 11.67 -.05 47.31 7.16 1960.27
of aunts/uncles (1.41) (.36) (7.88) (5.14) (7.01)

Grandparent generation, N = 539,493

Grandparents 9.27 -.16 45.63 3.87 1934.18
(1.70) (.38) (7.66) (.42) (5.55)

Parents’ 9.86 -.14 46.68 5.30 1942.01
aunts/uncles (1.80) (.38) (8.11) (3.63) (4.17)

Great grandparent generation, N = 337,265

Great 7.74 -.18 40.84 3.54 1913.88
grandparents (1.36) (.58) (8.11) (1.66) (3.70)

Note: Cells show means with standard deviations in parentheses. “Obs./child” shows number
of observations with non-missing data on all variables. The first row shows grade point average
for the child in the “years of schooling” column.
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Table D.2: Summary statistics, years of schooling sample

Years of Log income Social Obs./ Birth
schooling (residualized) stratification child year

Child generation

Child 12.31 1979.74
(1.96) (2.86)

Parental generation

Parents 10.98 -.13 46.19 1.99 1955.75
(1.59) (.49) (9.15) (.07) (3.29)

Aunts and uncles 11.17 -.11 46.08 5.06 1958.09
(1.35) (.38) (7.53) (2.56) (5.09)

Spouses of 11.34 -.05 46.98 3.93 1957.25
aunts/uncles (1.44) (.37) (8.26) (2.06) (5.62)

Parents’ cousins 11.92 -.04 45.72 8.34 1966.39
(1.22) (.37) (7.39) (6.48) (3.96)

Spouses of 11.85 -.01 46.02 5.30 1963.94
parents’ cousins (1.32) (.37) (8.34) (4.19) (4.24)

Siblings of spouses 11.33 -.08 47.01 8.23 1957.16
of aunts/uncles (1.37) (.34) (7.23) (5.88) (6.68)

Note: Cells show means with standard deviations in parentheses. N = 91,243 observations.
“Obs./child” shows number of observations with non-missing data on all variables.
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Table D.3: Correlation matrix, parental generation outcomes

Parents Aunts and uncles Siblings of Parents’ cousins Spouses of parents’ Siblings of spouses
aunts/uncles cousins of aunts/uncles

Sch. Inc. S.S. Sch. Inc. S.S. Sch. Inc. S.S. Sch. Inc. SS Sch. Inc. SS Inc. SS

Parents Inc. .300
S.S. .519 .308

Aunts and Sch. .466 .210 .323
uncles Inc. .211 .265 .179 .313

S.S. .304 .162 .304 .495 .259

Siblings of Sch. .345 .163 .254 .508 .228 .282
aunts/uncles Inc. .152 .177 .147 .226 .268 .195 .277

S.S. .230 .127 .234 .280 .184 .221 .476 .241

Parents’ Sch. .247 .126 .171 .251 .126 .157 .187 .089 .117
cousins Inc. .109 .108 .087 .109 .112 .078 .084 .075 .063 .326

S.S. .140 .071 .130 .136 .071 .121 .109 .060 .094 .410 .216

Spouses of Sch. .198 .101 .138 .199 .099 .126 .154 .074 .097 .531 .248 .243
parents’ Inc. .089 .082 .075 .089 .078 .066 .071 .059 .057 .235 .274 .171 .274
cousins S.S. .106 .060 .102 .102 .059 .091 .085 .048 .078 .235 .162 .175 .408 .211

Siblings of Sch. .244 .123 .178 .356 .160 .208 .458 .200 .270 .141 .062 .080 .118 .053 .064
spouses of Inc. .119 .102 .104 .162 .149 .125 .195 .213 .140 .073 .053 .045 .058 .043 .035 .324
aunts/uncles S.S. .169 .093 .165 .222 .117 .219 .266 .145 .260 .093 .046 .074 .075 .040 .059 .488 .265

Note: Correlation matrix between years of schooling (Sch.), log income (Inc.), and social stratification (S.S.) across categories of relatives. N = 541,459 observations.
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Table D.4: Horizontal GPA-schooling regres-
sions, only biological relatives

(1) (2) (3)

Parents .361 .301 .291
(.001) (.001) (.001)

Aunts and uncles .138 .127
(.001) (.001)

Parents’ cousins .064
(.001)

Sum of coefficients .361 .439 .483
(.001) (.001) (.002)

R2 .151 .166 .170

Note: Each column shows results from a separate
regression of child’s grade point average on parental
generation years of schooling. N = 541,459 observa-
tions. Robust standard errors in parentheses.
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Table D.5: Years of schooling sample

Years of schooling GPA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Main estimates

Parents .285 .243 .239 .234 .234 .234 .287 .243 .239 .234 .234 .233
(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)

Aunts and uncles .115 .100 .095 .095 .093 .119 .100 .094 .094 .091
(.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004)

Spouses of .036 .035 .035 .031 .044 .042 .042 .036
aunts/uncles (.004) (.004) (.004) (.004) (.004) (.004) (.004) (.004)

Parents’ cousins .046 .047 .047 .052 .048 .048
(.003) (.004) (.004) (.003) (.004) (.004)

Spouses of parents’ -.002 -.002 .008 .008
cousins (.004) (.004) (.004) (.004)

Siblings of spouses .011 .020
of aunts/uncles (.004) (.004)

Sum of coefficients .285 .358 .376 .410 .409 .414 .287 .362 .384 .422 .426 .435
(.003) (.004) (.004) (.005) (.005) (.005) (.003) (.004) (.004) (.005) (.005) (.005)

R2 .102 .114 .115 .117 .117 .117 .104 .117 .118 .121 .121 .121

Panel B: Lubotsky-Wittenberg estimates

LW estimates .390 .457 .469 .502 .499 .500 .408 .477 .494 .529 .531 .536
(.004) (.004) (.005) (.005) (.005) (.006) (.004) (.004) (.005) (.005) (.005) (.006)

R2 .131 .141 .141 .143 .143 .144 .138 .149 .150 .152 .152 .152

Note: Each column shows results from a separate regression of child’s years of schooling (columns 1–6) or grade point average (columns
7–12) on parental generation outcomes, using only the subsample with non-missing years of schooling for the child. N = 91,243 observations.
Parental generation variable is years of schooling in Panel A, and the LW index of years of schooling, log income, and social stratification
in Panel B. Each parental generation outcome is the average across all members of the given category of relatives. All variables have been
normalized to have mean zero and standard deviation one. Robust standard errors in parentheses.
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Table D.6: Region fixed effects regressions

(1) (2) (3) (4) (5) (6)

Panel A: 2,706 Mother’s parish F.E., N = 540,968

Sum of coefficients .354 .435 .456 .497 .504 .515
(.001) (.002) (.002) (.002) (.002) (.002)

Panel B: 10,913 SAMS region F.E., N = 493,774

Sum of coefficients .339 .419 .439 .479 .486 .496
(.001) (.002) (.002) (.002) (.002) (.002)

Panel C: 26,868 School-by-year F.E., N = 541,459

Sum of coefficients .345 .425 .446 .485 .493 .503
(.001) (.002) (.002) (.002) (.002) (.002)

Parents X X X X X X

Aunts and uncles X X X X X

Spouses of aunts/uncles X X X X

Parents’ cousins X X X

Spouses of parents’ cousins X X

Siblings of spouses of X
aunts/uncles

Note: Each cell shows the sum of coefficients from a separate fixed effects regression. Panel
A controls for mothers’ (or fathers’ when mother is missing) parish of residence within 10
years before or after the child’s birth. Panel B controls for child’s SAM region of residence
at ages 16–17. Panel C controls for year-specific school fixed effects for when the child was
in 9th grade. All standard errors are clustered on the fixed effects level.
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Table D.7: Lubotsky-Wittenberg regressions

(1) (2) (3) (4) (5) (6)

Parents .465 .397 .392 .382 .382 .381
(.001) (.002) (.002) (.002) (.002) (.002)

Aunts and uncles .137 .120 .111 .111 .109
(.002) (.002) (.002) (.002) (.002)

Spouses of aunts/uncles .038 .035 .035 .029
(.002) (.002) (.002) (.002)

Parents’ cousins .056 .049 .048
(.001) (.002) (.002)

Spouses of parents’ cousins .014 .014
(.002) (.002)

Siblings of spouses .016
of aunts/uncles (.002)

Sum of LW coefficients .465 .534 .550 .585 .590 .597
(.001) (.002) (.002) (.002) (.002) (.002)

Sum of underlying .524 .607 .626 .666 .671 .678
coefficients (.002) (.002) (.002) (.002) (.003) (.003)

R2 .186 .198 .199 .202 .202 .202

Note: Each column shows Lubotsky-Wittenberg weighted sums of coefficients from a sep-
arate regression of child’s grade point average on parental generation years of schooling,
log income, and social stratification. N = 541,459 observations. Sum of LW coefficients
shows the sum of the Lubotsky-Wittenberg coefficients across dynasty categories, while
Sum of underlying coefficients shows the sum of the individual coefficients from the under-
lying regression of child GPA on all three parental generation outcomes for each category
of relatives. Robust standard errors in parentheses.
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Table D.8: Horizontal GPA-income regressions

(1) (2) (3) (4) (5) (6)

Parents .262 .233 .228 .224 .223 .222
(.001) (.001) (.001) (.001) (.001) (.001)

Aunts and uncles .111 .100 .096 .095 .092
(.001) (.001) (.001) (.001) (.001)

Spouses of aunts/uncles .046 .044 .044 .038
(.001) (.001) (.001) (.001)

Parents’ cousins .052 .045 .045
(.001) (.001) (.001)

Spouses of parents’ cousins .024 .024
(.001) (.001)

Siblings of spouses .034
of aunts/uncles (.001)

Sum of coefficients .262 .344 .374 .416 .432 .455
(.001) (.002) (.002) (.002) (.002) (.002)

R2 .096 .108 .110 .113 .113 .115

Note: Each column shows results from a separate regression of child’s grade point average
on parental generation log income. N = 541,459 observations. Each parental generation
outcome is the average across all members of the given category of relatives. All variables
have been normalized to have mean zero and standard deviation one. Robust standard
errors in parentheses.
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Table D.9: Horizontal GPA-social stratification regressions

(1) (2) (3) (4) (5) (6)

Parents .282 .250 .237 .234 .232 .231
(.001) (.001) (.001) (.001) (.001) (.001)

Aunts and uncles .115 .105 .101 .100 .096
(.001) (.001) (.001) (.001) (.001)

Spouses of aunts/uncles .072 .070 .069 .063
(.001) (.001) (.001) (.001)

Parents’ cousins .041 .037 .036
(.001) (.001) (.001)

Spouses of parents’ cousins .029 .028
(.001) (.001)

Siblings of spouses .028
of aunts/uncles (.001)

Sum of coefficients .282 .365 .415 .446 .467 .483
(.001) (.002) (.002) (.002) (.002) (.002)

R2 .103 .116 .121 .122 .123 .124

Note: Each column shows results from a separate regression of child’s grade point average
on parental generation social stratification index. N = 541,459 observations. Each parental
generation outcome is the average across all members of the given category of relatives.
All variables have been normalized to have mean zero and standard deviation one. Robust
standard errors in parentheses.

36



Table D.10: Instrumental variables estimates

(1) (2) (3) (4) (5)

Panel A: IV first stage

Aunts and uncles .434 .369 .346 .344 .338
(.001) (.002) (.002) (.002) (.002)

Spouses of aunts/uncles .131 .123 .122 .107
(.001) (.001) (.001) (.002)

Parents’ cousins .119 .099 .098
(.001) (.001) (.001)

Spouses of parents’ cousins .040 .040
(.001) (.001)

Siblings of spouses .040
of aunts/uncles (.001)

R2 .245 .258 .271 .272 .273

Panel B: IV second stage

Parents .599 .599 .612 .613 .613
(.003) (.003) (.003) (.003) (.003)

Panel C: IV-LW second stage

Parents .654 .654 .664 .664 .664
(.003) (.003) (.003) (.003) (.003)

Note: Each column shows results from a separate regression. N = 541,459 obser-
vations. Panel A shows first stage regressions of parents’ average years of schooling
on average years of schooling of the other relatives, while Panel B shows 2SLS
estimates of child’s GPA on parents’ years of schooling, instrumented with the
other relatives’ years of schooling. Panel C shows Lubotsky-Wittenberg coeffi-
cients based on 2SLS estimates of child’s GPA on parents’ years of schooling, log
income, and social stratification, using the corresponding variables for the other
relatives as instruments. Robust standard errors in parentheses.
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Table D.11: IV estimates, distant relatives

(1) (2) (3) (4) (5)

Panel A: IV first stage

Aunts and uncles .338
(.002)

Spouses of aunts/uncles .107 .241
(.002) (.002)

Parents’ cousins .098 .139 .161
(.001) (.002) (.002)

Spouses of parents’ cousins .040 .055 .065 .148
(.001) (.002) (.002) (.001)

Siblings of spouses .040 .087 .190 .202 .217
of aunts/uncles (.001) (.001) (.001) (.001) (.001)

R2 .273 .195 .150 .132 .110

Panel B: IV second stage

Parents .613 .634 .662 .645 .620
(.003) (.004) (.005) (.005) (.006)

Panel C: IV-LW second stage

Parents .664 .668 .685 .667 .643
(.003) (.004) (.005) (.005) (.006)

Note: Each column shows results from a separate regression. N = 541,459 obser-
vations. Panel A shows first stage regressions of parents’ average years of schooling
on average years of schooling of the other relatives, while Panel B shows 2SLS
estimates of child’s GPA on parents’ years of schooling, instrumented with the
other relatives’ years of schooling. Panel C shows Lubotsky-Wittenberg coeffi-
cients based on 2SLS estimates of child’s GPA on parents’ years of schooling, log
income, and social stratification, using the corresponding variables for the other
relatives as instruments. Robust standard errors in parentheses.
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Table D.12: Multigenerational Lubotsky-Wittenberg estimates

(1) (2) (3) (4) (5) (6) (7) (8)

Vertical regressions Horizontal coefficient sums

Parental generation .465 .429 .442 .597 .570 .587
(.001) (.002) (.002) (.002) (.003) (.004)

Grandparental .252 .068 .073 .292 .018 .037
generation (.001) (.002) (.002) (.002) (.002) (.003)

Great grandparents .003 -.008
(.002) (.002)

Observations 539,493 539,493 539,493 337,265 539,493 539,493 539,493 337,265

R2 .186 .085 .192 .187 .202 .091 .205 .199

Note: Each column shows results from a separate regression of child’s grade point average on ancestor LW indices of
years of schooling, log income, and social stratification. In columns 5–8, each table entry shows the sum of coefficients
for all available types of relatives in each generation. Robust standard errors in parentheses.

39



−0.5

0.0

0.5

−1 0 1 2
Family outcomes

C
hi

ld
 G

PA

Only parents Parents' siblings Parents' cousins All relatives

Figure D.1: Lubotsky-Wittenberg regressions
Note: This figure is constructed in the same way as Figure 1, with the difference that the parental generation variable is
the Lubotsky-Wittenberg index of years of schooling, log income, and social stratification.
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